

Tensile Test - Principle

Hochschule Aalen 🕅

Determine mechanical properties, such as strength, stiffness, strain behavior, creep and relaxation behavior

DSC – Principle

Hochschule Aalen 🗡

Measurement of specific heat flow dq/dt of a sample as a function of temperature and time

TGA – Principle

Hochschule Aalen

Measurement of mass change behavior of a sample as a function of temperature and time

[Ehrenstein G. W., Riedel G., Trawiel P.: Praxis der Thermischen Analyse von Kunststoffen, 2. Aufl., Hanser, München, p. 150-160 (2003)]

Achim Frick

Institute of Polymer Science and Processing ,iPSP

DMA – Principle

Hochschule Aalen

Measurement of input signal to output signal as a function of temperature and time for determining stiffness and damping

Tensile Test (TT) - FKM (70 / 85 Shore A)

Hochschule Aalen

FKM different durometer hardness

Achim Frick

Tensile Test - Cyclic measurements

Variation of cycles

Hochschule Aalen 🗡

Achim Frick

Institute of Polymer Science and Processing ,iPSP'

DSC - NBR (unvulcanized / vulcanized) Hochschule Aalen endo 1st heating Method: 30°C till 230°C Heating /Cooling rate: 20 K/min Specific Heat Flow [W/g] NBR (raw material, rolled, unvulcanized) -38,7°C NBR (2mm plate, rolled, vulcanized) -35,8°C 0.2 -40 0 40 80 120 160 200 Temperature [°C]

Achim Frick

Institute of Polymer Science and Processing ,iPSP'

Achim Frick

Achim Frick

Institute of Polymer Science and Processing ,iPSP'

Achim Frick

Institute of Polymer Science and Processing ,iPSP'

11

Achim Frick

Institute of Polymer Science and Processing ,iPSP'

 $\Delta \textit{H=Enthalpy; T_{c}=Curing temperature; T_{ce}=Extrapolated curing temperature; w_{p}=Peak width h_{p}=Peak height.}$

Achim Frick

Institute of Polymer Science and Processing ,iPSP

Conclusion I

Hochschule Aalen

State of the art of rubber material characterization:

- \circ Durometer hardness \rightarrow Shore hardness
- **Tensile test** \rightarrow Strength at break, Strain at break (Modulus σ (ϵ = x %)
- Glass transition temperature T_a

Advanced Techniques → Thermal Analysis Methods (TA):

- o Differential Scanning Calorimetry (DSC)
- o Thermo-Gravimetric Analysis (TGA)
- o Dynamic Mechanical Analysis (DMA)

Achim Frick	Institute of Polymer Science and Processing, iPSP'	15

Conclusion II

Hochschule Aalen

Geometry

Geometry

dependent

independent

Thermal analysis techniques provides <u>multi-point</u> information.

DSC

- Operating temperature limits (Tg)
- Vulcanization behavior / kinetics (∆H)
- Differentiation between different material composition
- Melting, Post-crystallization and annealing effect on re-crystallization

TGA

- Material identification by decomposition behavior (finger-print)
- Differentiate between annealed and non-annealed material
- Volatile / Plasticizers content
- · Filler type and filler content identification

DMA

- Determination of stiffness (E* = E' + i E'')
- Determination of damping behavior (tan $\delta)$ for f = const., ϵ = const.
- Mullin effect (Dynamic strain-sweep)
- Indication of possible operating temperatures (Tg)
- Frequency dependent stiffness at reference temperature (Master curve)

Prüfdienstleistungen und Entwicklungen für Kunden

Steinbeis <u>Transferzentrum</u> <u>Polymer Engineering (PETZ) - Aalen</u> Leiter: Prof. Dr.-Ing. Achim Frick

--> Email: Achim.Frick@hs-aalen.de --> Tel.: 07361 / 576-2171, -2169

