

test po Fachmesse für Prüftechnik 10.-13.10.2016

How to measure the shear viscosity properly?

Torsten Remmler, Malvern Instruments

© 2016 Malvern Instruments Limited

Outline

- How is the Shear Viscosity defined?
- Principle of Operation: Rotational and Capillary Rheometer
- Choice of the Correct Geometry
- Steady State Condition
- Example for Steady State Shear Viscosity Curve

Basic Terms in Shear Rheometry

Typical Shear Rate Ranges

High Pressure Capillary-Rheometer

Sample: Water up to high viscous Results: Shear-Viscosity, Elongational-Viscosity, Wall Slip...

© 2016 Malvern Instruments Limited

Shear Viscosity

Resistance of a sample against the flow

Typical Shear Viscosities

<u>Material</u>		Shear-Viscosity (Pas)
Air		10-6
Aceton		10-4
Water		10-3
Olive Oil		10-1
Glycerol		10^{0}
Molten Polymers		10 ³
Bitumen		108
Glass at 500°C		1012
Glass at ambient		10^{40}
Units:		Remember
Pascal second	Pas (SI)	1 Pas = 10 P
Poise	P (CGS)	1 mPas = 1 cP

Shear-Viscosity depends on...

$$\eta(T, p, t, \dot{\gamma}) = \frac{\sigma}{\dot{\gamma}}$$

- Physical-chemical structure of the sample
- Temperature (up to 20% / K)
- Pressure
- Time
- Shear Rate

Steady-State Flow Behaviour

Principle of Operation: Rotational Rheometer

kinexus

- The drive is situated above the sample, ٠ not below.
- The driven spindle is air bearing ٠ supported so torque can be measured.
- The separate torque transducer is ٠ eliminated!

Advantages:

- Wide Torque Range 10e-9 to 10e-1 Nm ٠
- Short Response times
- Small inertia design
- **Direct Stress and Direct Strain**

Choice of Geometry: Rotational Rheometry

Cone-Plate / Plate-Plate

- Cone Adv: Const Shear Rate along the complete gap, easy cleaning, low sample volume, wide viscosity range
- Cone DisAdv: only for homogeneous samples, for disperse samples D90 < 10 x gap, solvent evaporation
- Plate Adv: flexible gap, auto-tension possible, low sample volume, often used for temperature dependent tests, good for disperse systems
- Plate DisAdv: shear rate dependency, solvent evaporation

Cup & Bob / Double Gap

- Cup&Bob Adv: large gap, works well for disperse systems, also for samples showing sedimentation, large surface area, nearly no evaporation effects, good for low viscous samples, less impact of loading errors
- Cup&Bob DisAdv: high moment of inertia limits oscillation and transient steps, high cleaning effort, large sample volumes (ca 2ml – 15ml)
- Double Gap Adv: highest sensitivity for low viscous samples, lower inertia compared to cup&bob, nearly no impact on loading errors
- Double Gap DisAdv: large sample volume (ca. 15ml 30ml), difficult cleaning

Principle of Operation: Capillary Rheometer

Laminar Pipe Flow

Isothermal, stationary Flow of an incompressible fluid

© 2016 Malvern Instruments Limited

TETETTI III GATA CELLINGOLLI

Choice of Geometry: Capillary Rheometer

 \Rightarrow 2-3 decades of shear rate can be achieved with a capillary die

Q = Volume Flux, R = Die Radius, L = Die Length, $\Delta P =$ Pressure Drop

Basic Viscometry: How to run a flow curve

CS-Mode: Steady state and non-steady state measurements

Steady State Flow Properties

© 2016 Malvern Instruments Limited

Steady State Condition: Rotational Rheometry

 \Rightarrow dLnJ/dLnt = 1 for pure viscous flow! \Rightarrow Deviations show measurement errors!

Steady State Condition: Capillary Rheometry

homogeneous

inhomogeneous

 \Rightarrow Equilibrium Pressure Drop is needed for Steady State Viscosity.

Comparison Stress- and Rate Controlled Test

Normal Stress Difference N1

 $\Rightarrow Always watch the Normal Stress during a Shear Viscosity Measurement!$ Malvern © 2016 Malvern Instruments Limited www.malvern.com

Example: Steady State Viscosity Curve

Conclusion

- Correct Geometry Choice is key for Viscosity Measurement
- Steady State Condition in both Rotational and Capillary Rheometry
- Monitoring N1
- Interpretation: Correct Stress / Shear Rate Range for Shear Viscosity Curve

Thank you for your attention.

Email: torsten.remmler@malvern.com