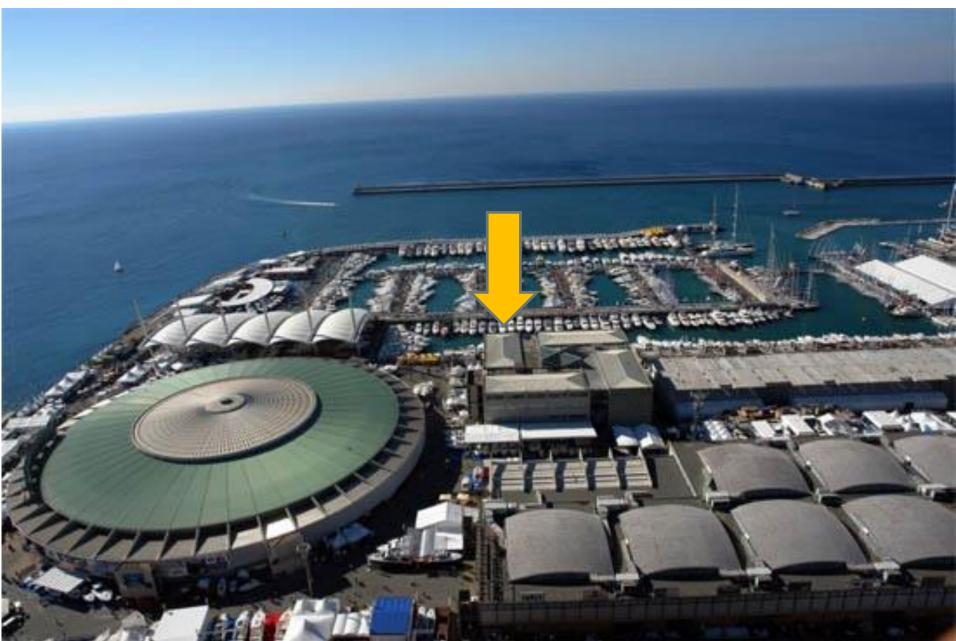


Experimental approaches for mechanical investigation of soft biological tissues as meniscal cartilage

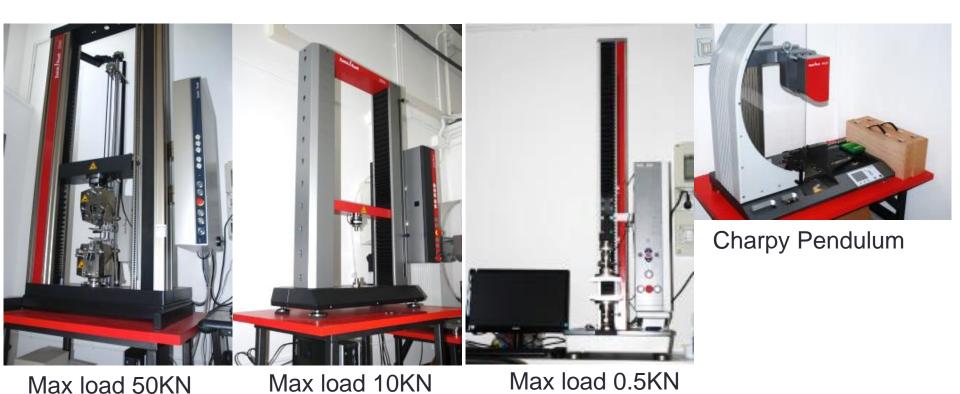
Alberto Lagazzo

Department Of Civil, Chemical and Environmental Engineering - Dicca, University of Genoa, Italy Dicca-Zwick/Roell - Material Science Joint Laboratory - Biomedical Engineering Section - Unige



DICCA – Zwick/Roell Joint Laboratory

Mechanical equipment **Zwick** Roell DICCA – Zwick/Roell Lab



Biological soft tissues

Have a structure resembling that of rubber: Long molecular chains which can take a lot of **configurations** of **equal energy**

- Structure indistinguishable from the liquid state in unloaded condition
- Behaviour as elastic solid when pulling force is applied

Entropic elasticity

Hyperelasticity of biological tissues

Hyperelasticity of biological tissues

General constitutive laws

Richter theorem of representation for isotropic materials

$$T = \alpha I + \beta \epsilon + \gamma \epsilon^2$$

Strain invariants

$$I_1 = \text{tr}(\epsilon)$$
, $I_2 = \frac{1}{2} \{I_1^2 - \text{tr}(\epsilon^2)\}$, $I_3 = \text{det}(\epsilon)$

$$\alpha = \frac{\partial F}{\partial I_1} + I_1 \frac{\partial F}{\partial I_2} + I_2 \frac{\partial F}{\partial I_3}$$
$$\beta = \left(\frac{\partial F}{\partial I_2} + I_1 \frac{\partial F}{\partial I_3}\right)$$
$$\gamma = \frac{\partial F}{\partial I_3}$$

Hyperelasticity of biological tissues Phenomenological models

1. Neo-Hookean (1 invariant, 1 parameter)

$$F = \mu/2 (I_1 - 3)$$

- 2. Mooney-Rivlin (2 invariants, 2 parameters)
- 3. Generalized Mooney-Rivlin (2 invariants, *n* parameters)
- 4. Ogden (*n* non-fundamental invariants, 2*n* parameters)
- 5. Logarithmic strain (1 invariant, 2 parameters) ($\varepsilon = ln(U)$)

On account of incompressibility

$$I_1 = \operatorname{tr}(\boldsymbol{\varepsilon}) = \ln(J) = 0$$
 $I_2 = -\frac{1}{2}\operatorname{tr}(\boldsymbol{\varepsilon}^2)$
$$F = 2\mu/\operatorname{q} \exp(-\operatorname{q} I_2)$$
 $\boldsymbol{\sigma} = 3\mu \exp(-\operatorname{q} I_2) \ln(\lambda)$ $E = 3\mu$

Hyperelasticity of biological tissues Physical models

1. Independent freely jointed chains

(gaussian model: 1 invariant, 1 parameter)

$$F = 3/2 kTn_c I_1 + F_0$$

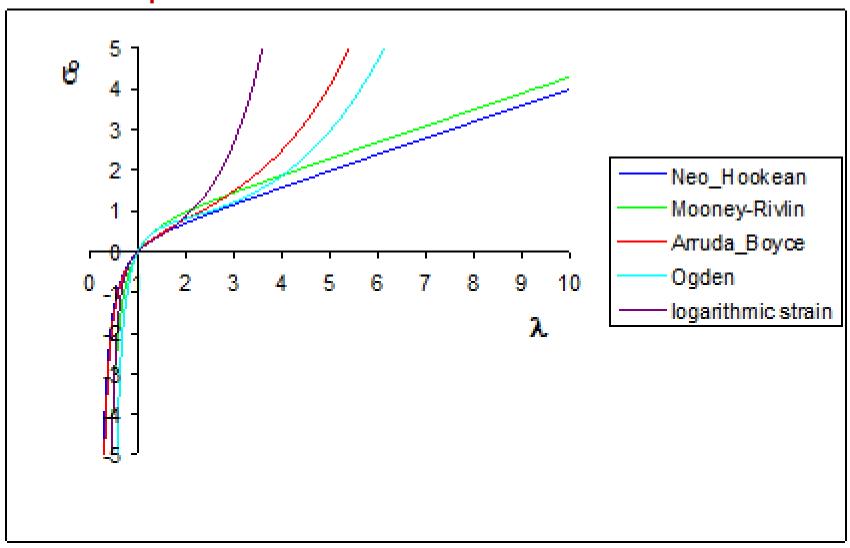
The gaussian chain model is equivalent to the neo-hookean model with $\mu = 3 \ kTn_c$

2. Arruda-Boyce

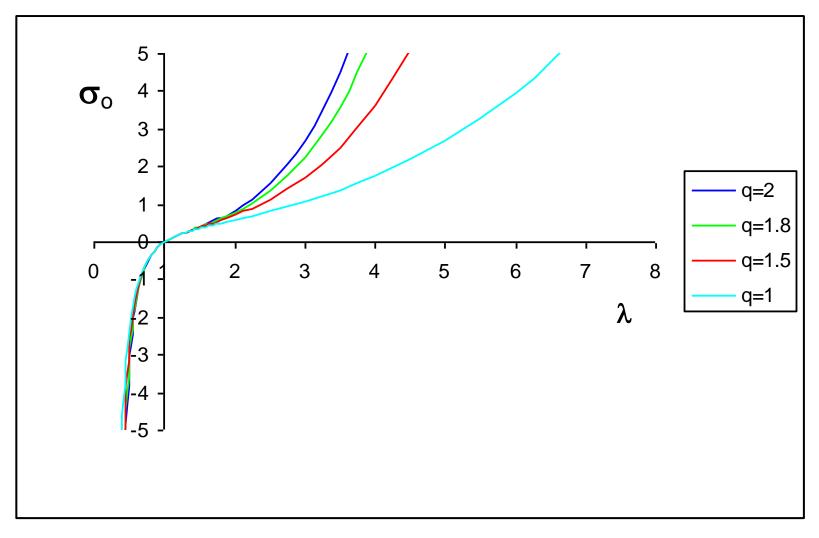
(non-gaussian chain network: 1 invariant, 2 parameters)

$$F = \mu \left\{ \frac{1}{2} (I_1 - 3) + \frac{1}{20\lambda_{\infty}^2} (I_1^2 - 9) + \frac{11}{1050\lambda_{\infty}^4} (I_1^3 - 27) + \dots \right\}$$

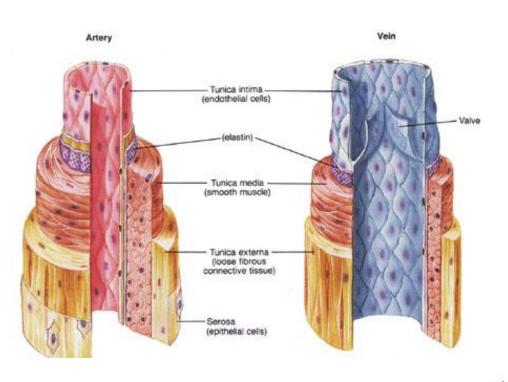
Hyperelasticity of biological tissues All incompressible models in uniaxial stress

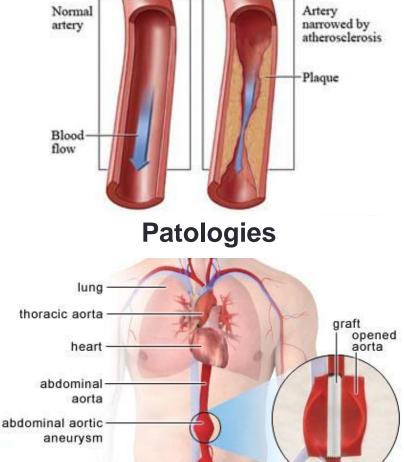


Hyperelasticity of biological tissues Logarithmic strain model



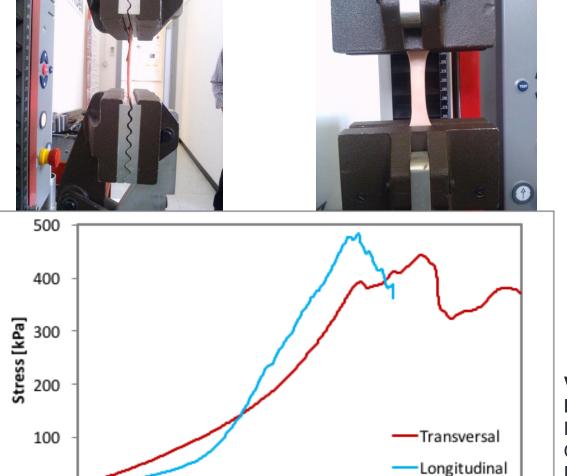
Biological tissues Vascular system





9

Mechanical analysis of porcine Aorta



40

Strain [%]

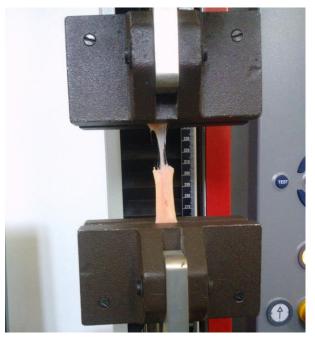
60

80

100

0

20

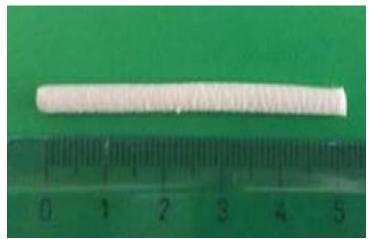


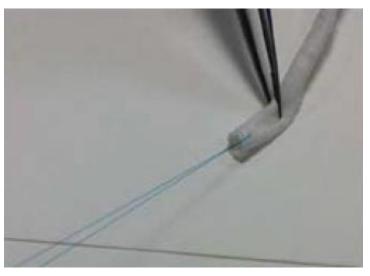
Vascular Electrospun PCL Prosthesis

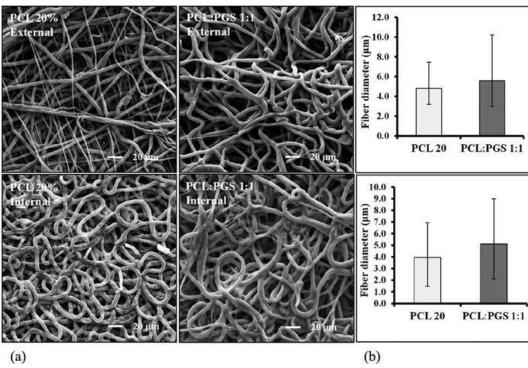
Prof. P. Perego (DICCA – University of Genoa)

Prof. D. Palombo (Medicine Faculty – University of Genoa)

Vascular prosthesis Electrospun scaffold



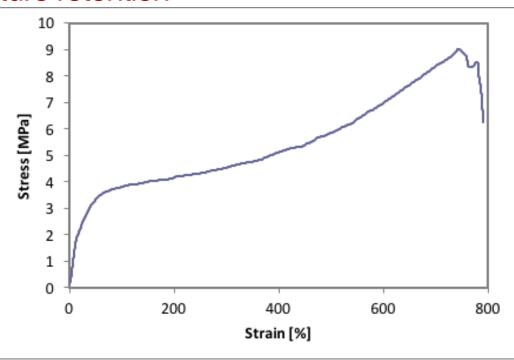




P. Ferrari, B. Aliakbarian, A. Lagazzo et al. Tailored electrospun small-diameter graft for vascular prosthesis *Int J Polym Mat and Polym Biomat* (2016), 66 (12) 635-643 DOI: 10.1080/00914037.2016.1252361

Vascular prosthesis

Tensile mechanical test & Suture retention



Sample	Young's modulus (MPa)	Tensile strength (MPa)	Elongation (%)	Normalized suture retention (grams-force/mm)
PCL 10%	2.48 ± 0.19^{b}	1.16 ± 0.24^a	84.16 ± 7.95 ^b	0.42 ± 0.18^a
PCL 15%	4.25 ± 0.22^a	1.84 ± 0.75^a	282.76 ± 127.72^a	6.80 ± 4.17^{a}
PCL 20%	$3.87 \pm 0.36^{a,c}$	$2.37 \pm 0.60^{a,b}$	643.30 ± 30.68^d	5.75 ± 2.31^a
PCL:PGS 3:1	4.25 ± 0.21^a	1.78 ± 0.31^a	$453.11 \pm 19.38^{\circ}$	4.94 ± 1.20^a
PCL:PGS 2:1	5.39 ± 0.84^d	$1.89 \pm 0.45^{a,b}$	242.83 ± 39.38^a	5.98 ± 2.45^a
PCL:PGS 1:1	7.61 ± 0.92^{e}	3.14 ± 1.47^b	218.48 ± 27.72^a	3.84 ± 2.72^a
Native human artery	$2.58 \pm 0.34^{b,c}$	1.13 ± 0.06^a	46.54 ± 11.32^{b}	4.09 ± 2.12^a

Poroelastic biological tissues

Elasticity of foam-like materials Compressible materials

1. Changing the first two invariants of Cauchy-Green strain

$$I_1^* = I_1 J^{2/3}; \quad I_2^* = I_2 J^{4/3}$$

2. Addition of a volumetric term $\frac{1}{2}K(J-1)^2$ to the free energy

Neo-Hookean
$$F = \frac{\mu}{2} (I_1^* - 3) + \frac{K}{2} (J - 1)^2$$

Model of Blatz and Ko

$$F = \frac{\mu}{2} \left\{ \frac{I_2}{I_3} - \frac{1+\nu}{\nu} + \frac{1-2\nu}{\nu} I_3^{\frac{\nu}{1-2\nu}} \right\} \text{ for } \nu = 0.25 \quad F = \frac{\mu}{2} \left\{ \frac{I_2}{I_3} + 2I_3^{1/2} - 5 \right\}$$

Elasticity of foam-like materials

Compressible materials: logarithmic strain model

$$I_1 = \ln(J)$$

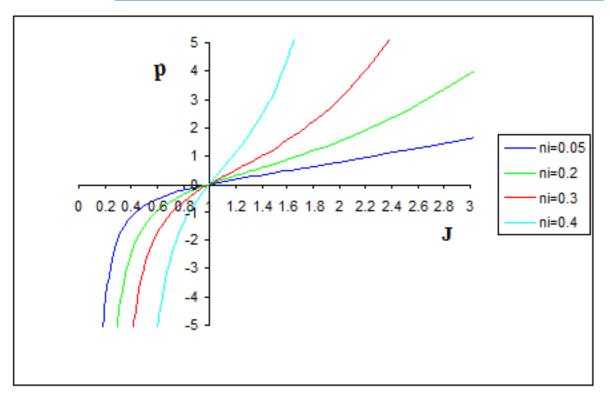
$$F = \frac{2\mu}{q} \exp(s I_1^2 - q I_2)$$

where
$$s = \frac{1 - v}{2(1 - 2v)} q$$

Constitutive eq. for F

$$\boldsymbol{T}^{(R)} = \frac{v}{1-2v} qFI_1 \boldsymbol{I} + qF \boldsymbol{\varepsilon}$$

$$p = B \ln(J) \exp\left(q \frac{1+v}{6(1-2v)} \ln^2(J)\right)$$



The system is **biphasic**:

- one phase is the incompressible fluid
- the other is the porous matrix or skeleton.

The fluid is assumed to saturate the porosity of the skeleton.

The skeleton

hyperelastic (compressible or incompressible) structures:

- aggregate of particles (soldered at their contact points or even loose like sand)
- foam (an array of cells or spherical voids communicating through openings or channels in their walls)
- sponge (a 3-d network of relatively slender elements or trabeculae like the structure of cancellous bone)
- vascolarized tissue (fractal features).

drained condition

the liquid can freely flow through the pores (negligible effect of viscosity). Empty skeleton.

undrained condition

the outlet of the fluid is partially or totally inhibited external surface is waterproof pore channels very small

perfused medium

the fluid enters the medium at a given pressure and gets out from surface openings at a rate which depends:

viscosity

pore structure (porosity, pore diameter and length, tortuosity)

- perfusing fluid causes an increase of porosity
- skeleton micromechanically incompressible

$$J = \frac{1 - f_o}{1 - f}$$

Ashby's models

fundamental cubic structures

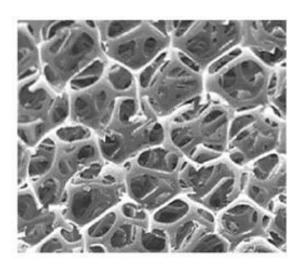
cellular-solid prototype:
 matter distributed on the cube faces
 (t is the wall thickness, openings are not considered)

$$\rho = 1 - (1 - t/a)^3$$

schematic spongeous solid:

matter distributed along the cube edges in the shape of rods, each with length *a* and square cross-section of size *t*

$$\rho = 3t^2/a^2 - 2(t/a)^3$$



Ashby's models: axial loading (no buckling)

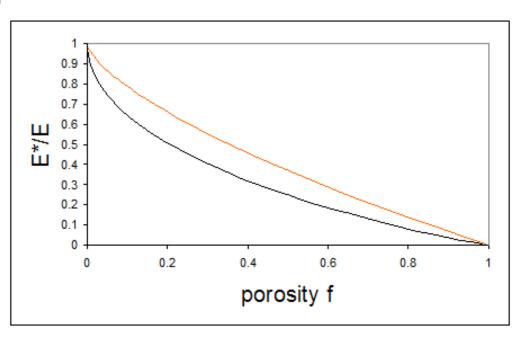
$$\varepsilon = \frac{\sigma a^2}{EA} \qquad E^* = EA/a^2$$

Cellular structure

$$A/a^2 = 2t/a - (t/a)^2 = 1 - (1 - t/a)^2$$
 $\frac{E^*}{E} = 1 - f^{2/3}$

Spongeous structure

$$A/a^2 = (t/a)^2$$



Effect of perfusion pressure

Logarithmic strain model.

 p_0 initial perfusion pressure;

 f_0 natural porosity of the material in undeformed state

B* bulk modulus for infinitesimal strain

 J_0 volumetric stretch

$$p_0 = B * \ln(J_0) \exp \left(q \frac{1 + v}{6(1 - 2v)} \ln^2(J_0) \right)$$

Effect of external load

$$p = B^* \ln(J_L) \exp\left(q \frac{1+\nu}{6(1-2\nu)} \ln^2(J)\right) \exp\left(\frac{q}{2} \operatorname{tr}(\boldsymbol{D}^2)\right)$$

 J_o effect of the perfusion pressure

 J_L contribution of the loading.

The material may collapse when J becomes less than the unity (i.e. $J_L < 1/J_o$)

Effect of external load: Uniaxial compression

$$\epsilon = ln(\lambda)$$

$$ln(J_L) = (1-2\nu)\varepsilon$$

$$ln(J) = ln(J_o) + (1-2\nu)\varepsilon$$

$$\mathbf{D} = \frac{1}{3} \begin{bmatrix} -(1+\nu)\varepsilon & 0 & 0\\ 0 & -(1+\nu)\varepsilon & 0\\ 0 & 0 & 2(1+\nu)\varepsilon \end{bmatrix}$$

$$\operatorname{tr}(\boldsymbol{D}^2) = \frac{2}{3} (1 + v)^2 \, \varepsilon^2$$

$$\sigma = \frac{4\mu^*}{3B^*} (1+v) \frac{p}{\ln(J_L)} \varepsilon + p$$

$$p = B*(1-2\nu)\varepsilon \exp\left(q\frac{1+\nu}{6(1-2\nu)}\left[\ln(J_o) + (1-2\nu)\varepsilon\right]^2\right) \exp\left(\frac{q}{3}(1+\nu)^2\varepsilon^2\right)$$

uniaxial compression: numerical simulation

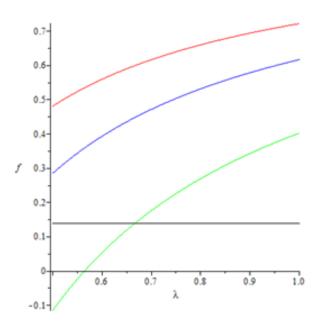
Parameters:

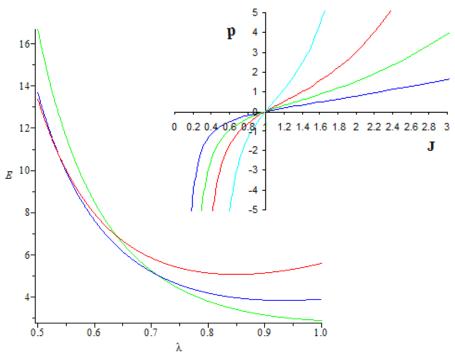
Skeleton porosity in the undeformed state: $f_o = 0.14$

Micromechanical moduli: E_o = 5 kPa (v_o = 0.45) , μ_o = 1.72 kPa

Macromechanical moduli: $E^* = E_o \left(1 - f_o \right)^k$; $\mu^* = \mu_o \left(1 - f_o \right)^{k'}$:

k = 2.5; k' = 3; (v = 0.05); $B^* = \frac{E^*}{3(1-2v)}$

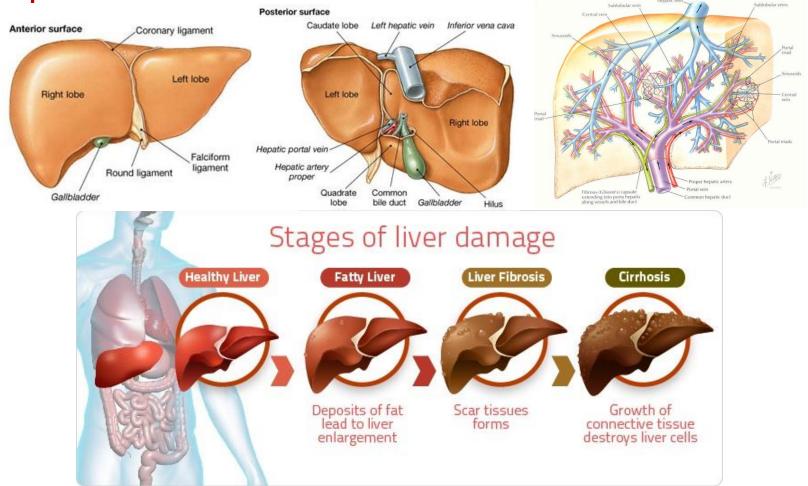




 p_0 = 0.5 Kpa green, p_0 = 1 Kpa blue, P_0 = 3 Kpa red

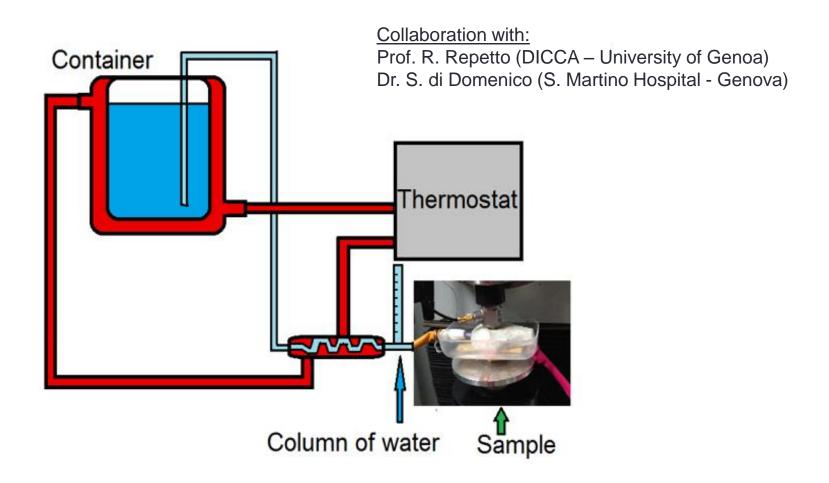
Biological poroelastic tissues

Hepatic tissue



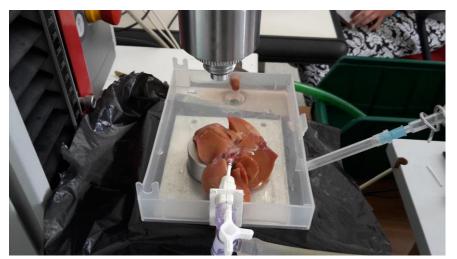
Liver diseases modify the mechanical properties of the liver Microcirculation deteriorates and Liver tissues fail to receive the proper amount of oxygen

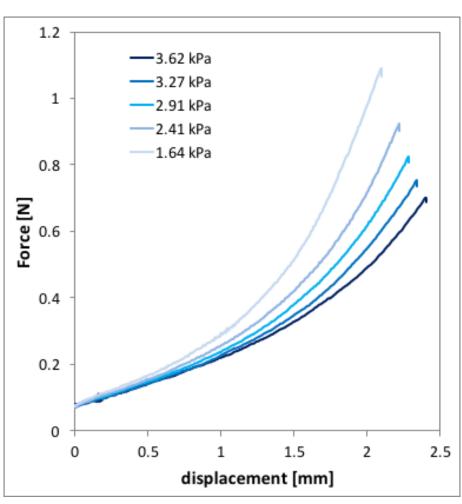
Mechanical characterization of rat liver tissue in perfusion Perfusion experimental setup



Porous matrix Project to simulate rat liver behaviour: Fluidodynamics **PhD** (Ing. V. Baronti)

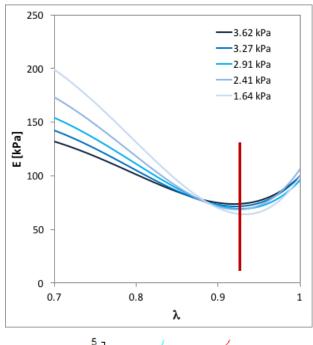
Mechanical characterization of rat liver tissue in perfusion

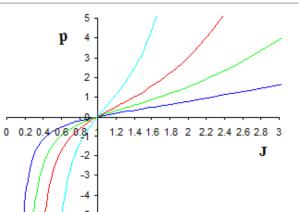


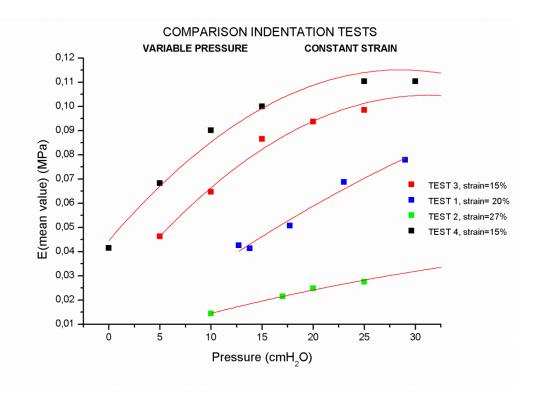


Compressive tests at different flow rate

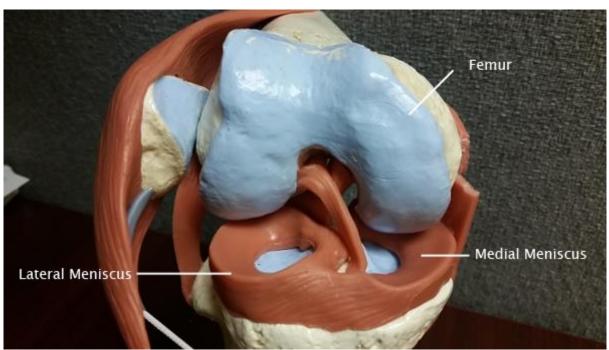
Mechanical characterization of rat liver tissue in perfusion Results

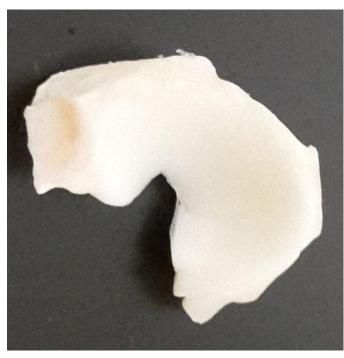






Meniscus



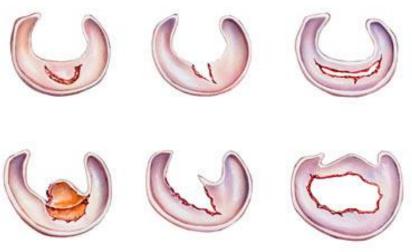


Menisci attenuate, thanks to their elastic compliance, the contact stresses on the condyle surfaces, thereby safeguarding the underlying articular cartilage and preventing osteoarthritis.

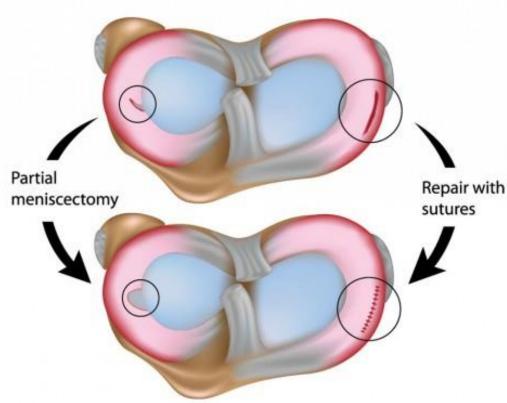
Meniscal Tear

Meniscal Tear is a common pathology of the knee that in many cases requires an intervention of meniscectomy, which both in the immediate and in the progress may be the cause of

- impaired joint functionality
- flattening of the condyle
- narrowing of the joint space
- ridge formation
- osteoarthritis.



Meniscus tear and treatment

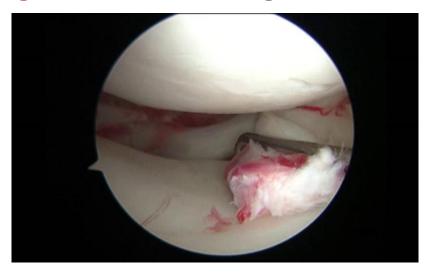


The principles of repair include smoothing and abrading the torn edges and bordering synovium to promote bleeding and healing 33

The use of cadaveric meniscal allografts remains the golden

standard, but suffers from:

- penury of donor tissue
- risk of infections
- size matching



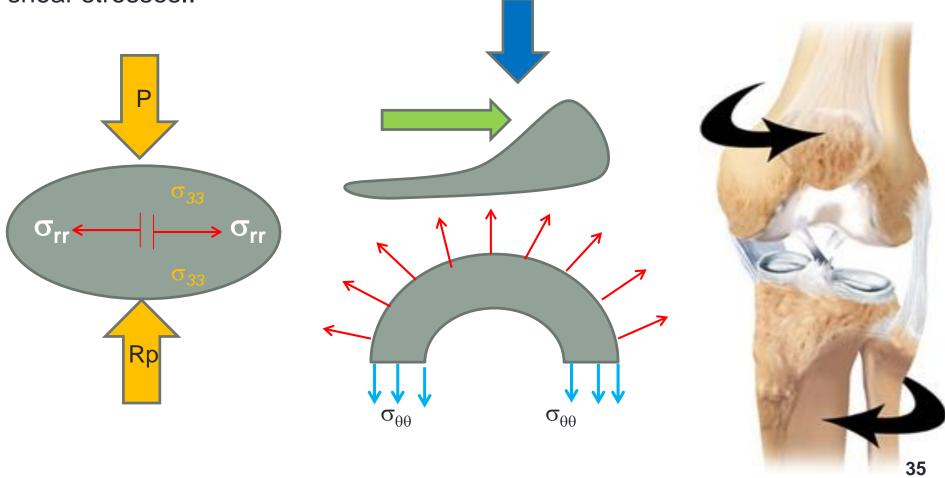
Therefore there is a growing interest in artificial meniscus prostheses

Characterization of meniscus tissue is still to be desired for the development of more effective approaches

State of Stress

The state of stress generated by a vertical load (P) in the core of the meniscus does not simply create a compressive stress (σ_{33}) in the load direction, a tensile radial stress (σ_{rr}), but also tangential circumferential hoop stresses ($\sigma_{\theta\theta}$),

shear stresses...

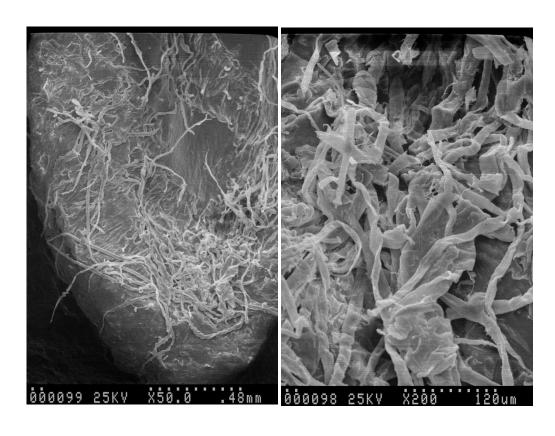


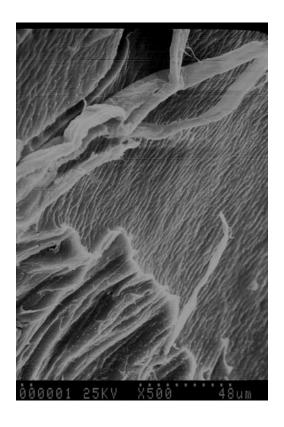
The Storage Temperature Harvesting and storage of menisci

Deep-freezing at -80 °C or less at a high cooling rate is recommended by several authors for preservation of meniscal allografts and should be considered the golden standard also for the storage of tissue to be used in mechanical testing.

The Storage Temperature

Non perfect storage conditions: Problems





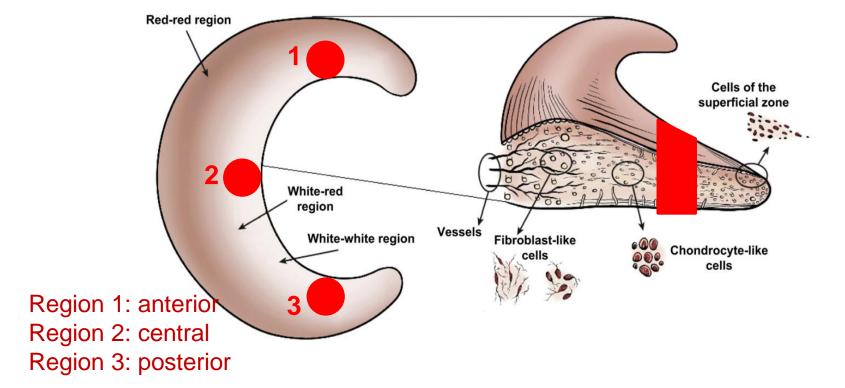
Damage of fibrils

The testing Methods

I - Uniaxial compressive loading

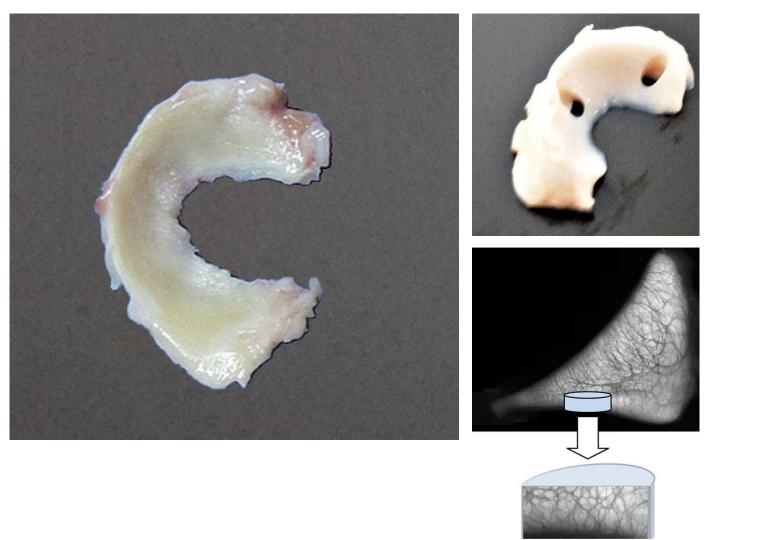
Cylindrical samples (4 mm in diameter) for compression tests from 3 different regions of a meniscus

The cylinder is cut perpendicularly to the tibial plateau, by using a histology punch, and transversally by a sharpened blade to obtain two flat and parallel surfaces



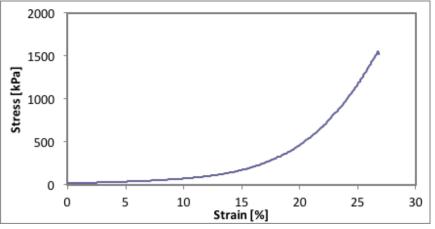
The testing methods I.

Meniscus sample after thawing and specimen harvesting

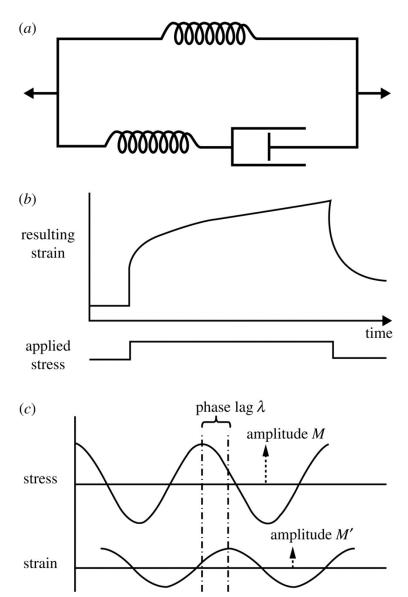


The testing Methods

Static test (5 mm/min). Behaviour of sample in partial swelling.

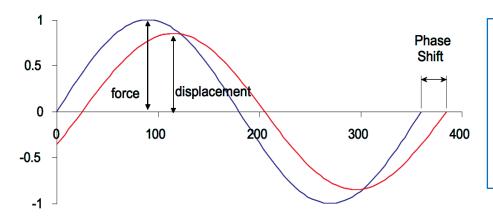


Standard solid model



DMA analysis

 Dynamic mechanical properties refer to the response of a material as it is subjected to a periodic force.



- $\sigma(t) = \int_{-\infty}^{t} \Phi(t \tau) \varepsilon(\tau) d\tau$
- $\hat{\sigma}(\omega) = \hat{\Phi}(\omega) \cdot \hat{\varepsilon}(\omega)$
- $\hat{\sigma}(\omega) = Re[\hat{\varepsilon}(\omega)] + i \cdot Im[\hat{\Phi}(\omega)]$

Mechanical properties may be expressed in terms of

Complex Modulus $E^* = E' + iE''$

- E': dynamic storage modulus ~ Young's modulus
- E": dynamic loss modulus
- Loss Factor: $Q^{-1} = tan\delta = E''/E'$ (account for anelasticity and dissipation)

Advantages of DMA vs. static

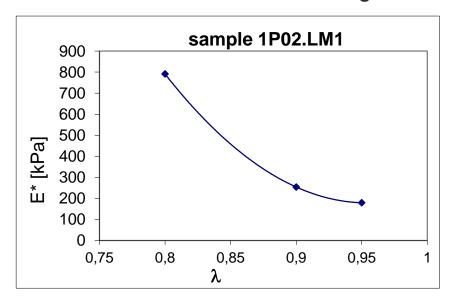
- Information both in elastic and in viscous field
- Possibility to explore a range in frequency

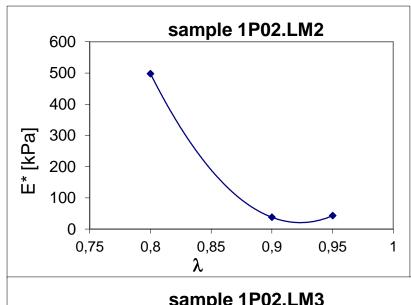
DMA is thus particularly useful in the characterization of viscoelastic materials like organic tissues

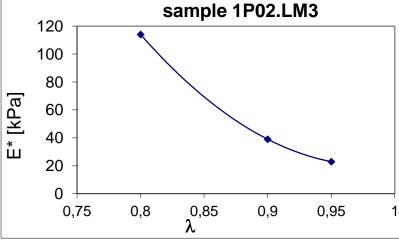
Dynamic mechanical test Complex modulus for indentation test Force transducer Laser Vibrometer Indenter Sensor Signal Conditioner Plate Force Sample Transducer Shaker shaker CE COURT SERVICE The **complex modulus** (storage modulus) was obtained by using an Amplifier home måde instrument Project ROBOSKIN-FP7 2010-13

The Testing Methods I.

Dynamic tests (30 Hz) on cylindrical samples (diameter 4 mm) at different stretch and in maximum swelling conditions



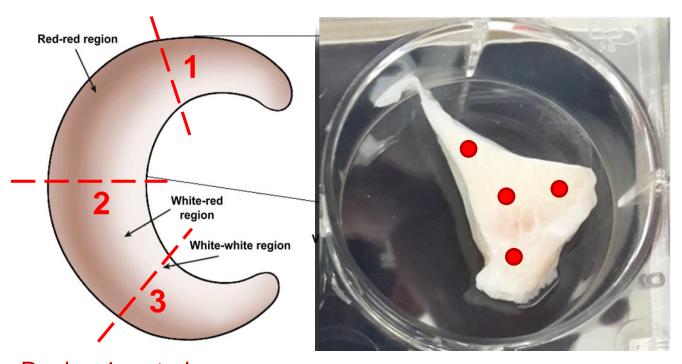




The Testing Methods

II - Indentation method

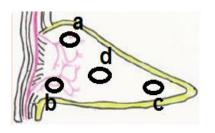
Radial cross sections were cut from anterior, central and posterior zones. From each slice different sites on the section were investigated



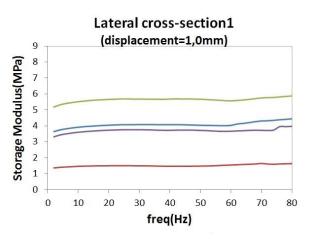
Region 1: anterior Region 2: central

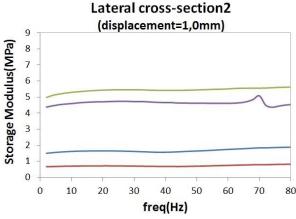
Region 3: posterior

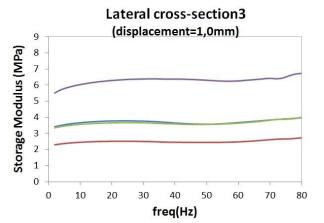
The Testing Methods II.



Cross-sections Lateral Meniscus







The Testing Methods II.

Indentation method: advantages

- test specimen of definite shape not required
 very important asset in the effort of testing the tissue as close as possible to
 its undisturbed state
- Localization of the measurement can be varied at leisure by changing the size of the indenter (mm to μm)
 The region over which the properties of the tissue are averaged by an indentation test is the stressed zone under the indenter, which has a size of the order of the tip diameter in the case of indentation by a cylinder, or the diameter of the contact area in the case of a spherical tip

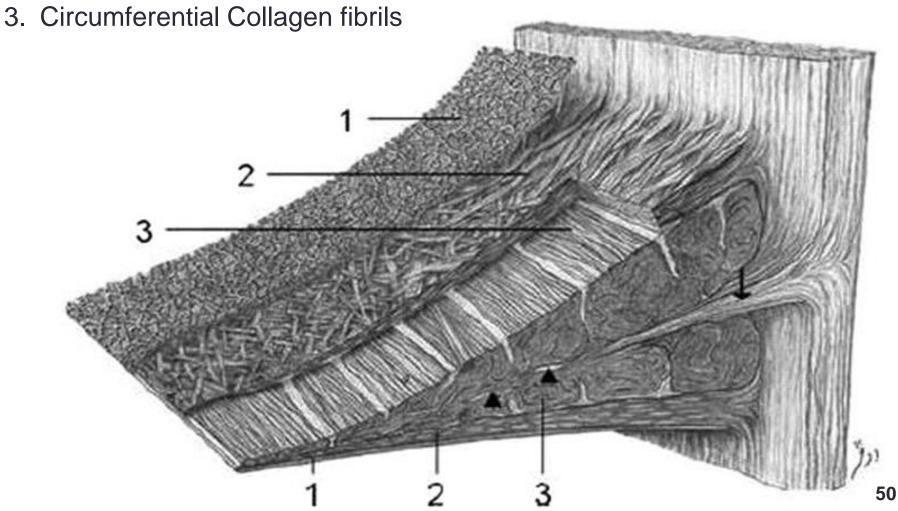
The Testing Methods II.

Indentation method: problems

- No direct evaluation of the compressive Young modulus
 the relation of the modulus with the measured elastic deformation of
 the indented surface is provided by the theory of elasticity, which
 normally assumes a linear homogeneous and isotropic material.
- Unknown uncertainties introduced by large deformations, anisotropy and local inhomogeneity
- Partial alteration of the internal structure due to the cut of the fibrils

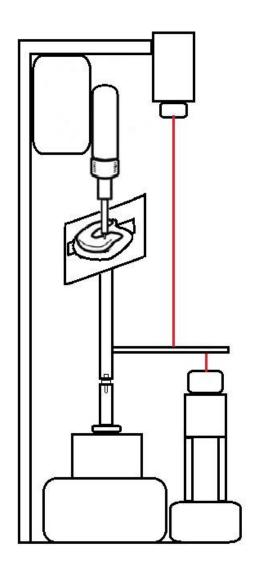
The Composite Structure

- 1. External mat
- 2. Radial Collagen fibrils

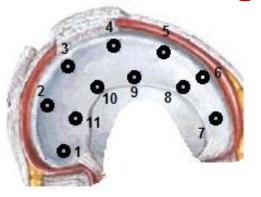


The Testing Methods III.

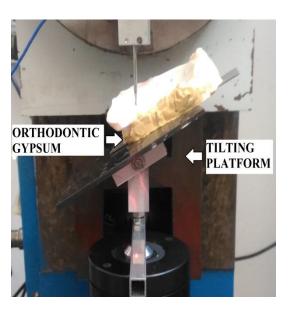


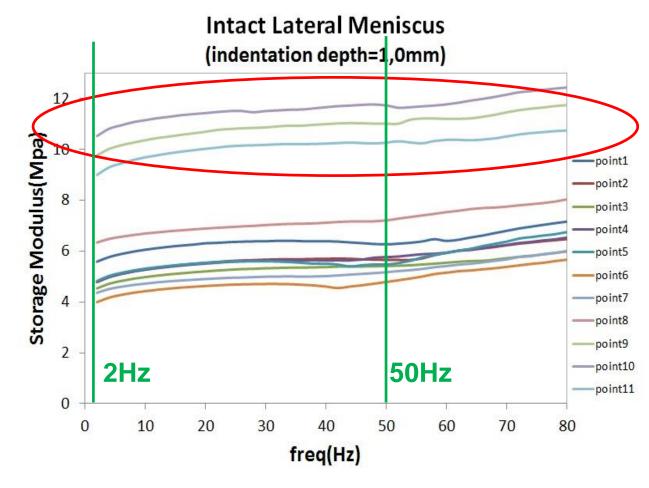


The Testing Methods III.

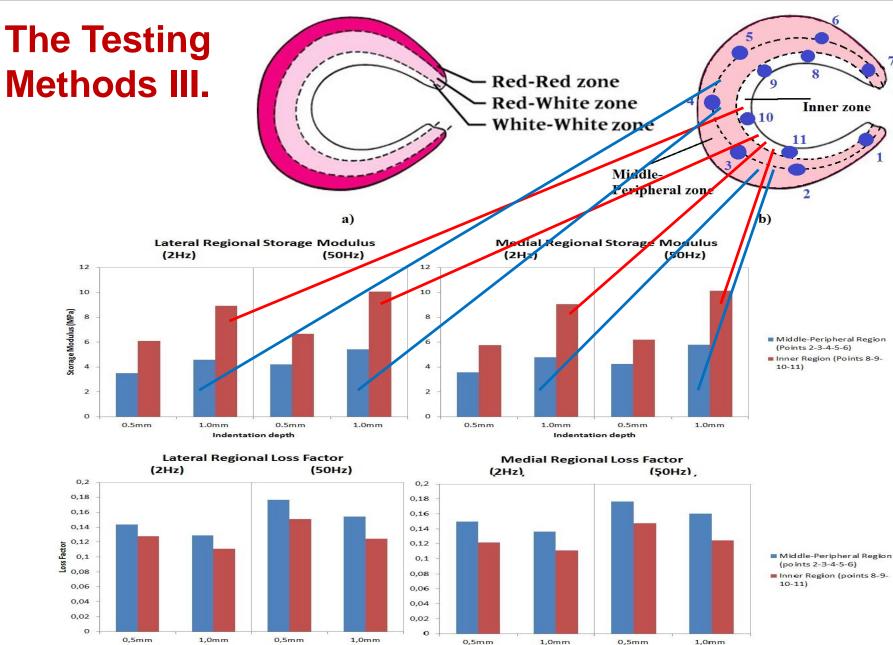


Intact Lateral Meniscus





Indentation depth



Indentation depth

Conclusions

Natural Composite Material analysis is a quite complex task, highly dependent upon:

- The samples homogeneity and availability
- The sampling procedure and technologies
- The load conditions
- The storage protocol

A conservative approach consisting in the maintenance of the **natural condition** of the biological tissue are fundamental to observe the effective mechanical response of the material

- perfusion of the sponge-tissue for the liver
- continuity of fibers for the meniscus

26 testXpo 2017

National Research Council of Italy

Institute of Electronics. Computer and Telecommunication Engineering

UNIVERSITÀ DEGLI STUDI **DI GENOVA**

Prof. Marco Capurro

Acknowledgments:

Dr. Elisabetta Monteleone Sig. Massimiliano Varriale