Zwick testXpo 2018

Capillary Rheometry – A Method to Predict Flow Properties under Processing Conditions

Torsten Remmler, Malvern Panalytical GmbH

Overview

- \bullet Range of Applications for Capillary Rheometry
- \bullet Introduction into capillary rheometry: Principle of Operation and theoretical background
- \bullet Test results on LDPE: Complete Capillary Characterisation
- \bullet Advanced Test Types: Relaxation, Thermal Degradation etc.

Capillary Rheometry: Main Applications

Typical Shear Rates

Rotational-Rheometer

Sample: Water up to solids

Results: Shear-Viscosity, Yield Stesses, Visco-Elasticity, Relaxation...

High Pressure Capillary-Rheometer

Sample: Water up to high viscous Results: Shear-Viscosity, Elongational-Viscosity, Wall Slip...

Isothermal, stationary Flow of an incompressible fluid

Newtonian

Q=Volume Flux, R= Die Radius

L=Die Length, P=Pressure Drop

Correction: Entrance zone of a capillary die

Aim of the test: to separate entrance pressure and shear pressure drop!

Rosand Twin Bore Principle

$$
P_{\text{full}} = P_{\text{shear}} + P_{\text{entrance}}
$$

left: capillary right: orifice

How do we get the Extensional Viscosity?

Cogswell`s Convergent Flow Model \Rightarrow Extensional Viscosity

$$
P_{\text{full}} = P_{\text{shear}} + P_{\text{entrance}} \longrightarrow \lambda = \frac{9 (n+1)^2 (P_e)^2}{32 \eta \gamma^2}
$$

• **Special Orifice Die according to Uni Zlin Model enables characterisationof very small extensional rates too.**

> $n =$ *d* (log σ) *d* (log γ) Non-Newtonian Index (Ostwald-de Waele)

 $\varepsilon \approx 10^{-1} - 10^{3}$ s⁻¹

© 2018 Malvern Panalytical F. Cogswell, "Polymer Melt Rheology", Woodhead Publishing Limited (1981) Zatloukal, Vlcek, Tzoganakis, Saha *J. Non-Newtonian Fluid Mech*. **107** (2002) 13–37

.

 \Rightarrow Blow Moulding is mainly influenced by Extension!

Figure 5 Merging area of the flat coextrusion die.

Instabilities caused by Extensional Flow Behaviour of LDPE

Zatloukal et. al. Journal of Applied Polymer Science, 98 (2005) 153

Further Applications: Wall Slip

• Wall Slip Velocity of chromium catalyzed HDPE at 190°C

Pressure drop is important

homogeneous inhomogeneous

 $\Rightarrow\,$ For polymer blens, filled polymers, suspensions, emulsions, composites etc.

Thermal degradation / Curing

 \Rightarrow Gives maximum process times under high temperatures

Flow Instabilities

Melt fracture

 \Rightarrow What is the max processing pressure / Shear Rate?

Relaxation LDPE

What happens after processing

 \Rightarrow inner stresses can lead to surface crack (automotive industry)

Rheometer Types

Benchtop RH2000 and Floor Standing RH7/10

Summary

- \bullet Capillary Rheometry gives correlation with processing flow properties
- \bullet Calculation of extensional viscosity according Cogswell method
- \bullet Flow curves up to very high shear end extensional rates
- \bullet Prediction of flow instabilities
- \bullet Correlation with structural changes during processing

Thank you for your attention.

Email: torsten.remmler@malvernpanalytical.com