

New testing device to evaluate edge cracking resistance and crashworthiness of thin metallic sheets

Daniel Casellas, David Frómeta, Antoni Lara, Sergi Parareda

testXpo - 2019 28TH International forum for Material Testing Ulm, 14-17 October 2019

Motivation: PROBLEM/CHALLENGE

HIGH STRENGTH MATERIALS SHEETS are used for lightweighting (gauge thinning)

AHSS: Advanced High Strength Steels

testXpo - 2019 28[™] International forum for Material Testing 2

HIGH STRENGTH MATERIALS SHEETS are used for lightweighting (gauge thinning)

BUT....

NEW MATERIALS BRING NEW PROBLEMS: SHEETS CAN FRACTURE DURING FORMING

NEW CHALLENGE : DEAL WITH CRACK-RELATED PROBLEMS IN SHEET

METAL FORMING

testXpo - 2019 28[™] International forum for Material Testing

Experimental tools to predict/estimate cracking behavior in HIGH STRENGTH MATERIALS

PREDICT Edge cracking

ESTIMATE crashworthiness

testXpo - 20 <u>28[™] Int</u>ernat

Crack-related problems should be addressed considering the material property that controls crack propagation resistance:

FRACTURE TOUGHNESS

- How to measure fracture toughness in AHSS sheets?
 - ESSENTIAL WORK OF FRACTURE METHODOLOGY
- Can fracture toughness be used to rationalize crack related problems?
 - Edge cracking
 - Crashworthiness

✓ YES IT CAN BE USED

Outline

1. BACKGROUND IN CRACK-RELATED PROBLEMS

2. FRACTURE TOUGHNESS EVALUATION IN THIN SHEETS

testXpo - 2019 28TH International forum for Material Testing

Ulm 14-17 October 2019

Motivation & Outline

1. BACKGROUND IN CRACK-RELATED PROBLEMS

2. FRACTURE TOUGHNESS EVALUATION IN THIN SHEETS

3. FRACTURE TOUGHNESS AS A MATERIAL PROPERTY

LAB SCALE TESTS

testXpo - 2019 28[™] International forum for Material Testing

Ulm 14-17 October 2019

Motivation & Outline

1. BACKGROUND IN CRACK-RELATED PROBLEMS

2. FRACTURE TOUGHNESS EVALUATION IN THIN SHEETS

3. FRACTURE TOUGHNESS AS A MATERIAL PROPERTY

4. NEW DEVICE TO MEASURE FRACTURE TOUGHNESS

5. CONCLUSIONS AND FUTURE WORKS

testXpo - 2019 28[™] International forum for Material Testing

Ulm 14-17 October2019

 $\langle \rangle$

1. Background in crack-related problems

Outline

- 1. Background in crack-related problems
- 2. Fracture toughness evaluation in thin sheets
- 3. Fracture toughness as a material property
- 4. New device to measure fracture toughness
- 5. Conclusions and future works

1. Background: crack related problems 10 <>

Edge cracking in cold forming

Damage

Crack propagation

testXpo - 2019 28[™] International forum for Material Testing

eurecat

Centre Tecnològic de Catalunya

Ulm 14-17 October 2019

1. Background: crack related problems 11 <>

Crack formation in crash

eurecat Centre Tecnològic de Catalunya

Ulm 14-17 October2019

testXpo - 2019 28TH International forum for Material Testing

1. Background: crack related problems 12 <>

Crack formation in crash

eurecat

Centre Tecnològic de Catalunya

Crash index	Damage	
100	no cracks	
>75	crack length < 10 mm	
50-75	10 mm < crack length < 25 mm	
25-50	crack length > 25 mm	
<25	"splitting and curling"; multiple breaks	

2. Fracture toughness evaluation in thin sheets

Outline

- 1. Background in crack-related problems
- 2. Fracture toughness evaluation in thin sheets
- 3. Fracture toughness as a material property
- 4. New device to measure fracture toughness
- 5. Conclusions and future works

eurecat | 2. Fracture toughness evaluation of thin sheets 14 <>

- Area under stress-strain curve gives no information about crack propagation resistance
- Linear Elastic Fracture Mechanics
 - (K_{IC}) : large plastic zone in metal sheets
- Elastic-plastic fracture

mechanics: J-integral (J_C), CTOD

Alternative tests

2. Fracture toughness evaluation of thin sheets 45 <> eureca

► ∆a, miles

2.0

POINTS USED FOR

1.5

J-Integral (ASTM E1820)

- Standard methodology
- **Complex procedure**
- **Requires the measurement of crack advance**
- Specimen size requirements are not satisfied for thin sheets
- The propagation energy includes the work of plastic deformation

- Easy to perform
- Complex loading mode that evolves from uniaxial tensile to bending
- The propagation energy includes the work of plastic deformation
- Not a material property

testXpo - 2019

eurecat | 2. Fracture toughness evaluation of thin sheets 16 <>

>Fracture toughness in AHSS sheets?

- The Essential Work of Fracture (EWF) methodology is used to evaluate the fracture of thin plates on plane stress. Cotterell and Reddel (1977)
- It has been successfully applied in polymer films (ESIS TC4, 1993) and ductile metals (low C steel, Cu, Al)

eurecat | 2. Fracture toughness evaluation of thin sheets 17 <>

DUCTILE FRACTURE: Fracture energy can be separated into two terms:

$$W_f = W_p + W_e$$

Fracture Process zone (FPZ)

 $W_{\rm e},$ essential~work~of~fracture, is related to damage, surface~creation and necking, then it is essential.~TOUGHNESS

 W_p , **Plastic work**, is related to plastic deformation. It depends on the specimen size and geometry and the loading mode, then it is **no essential**

How to separate them?

→ The Essential Work of Fracture (EWF) methodology

eurecat | 2. Fracture toughness evaluation of thin sheets 18 <>

Ligament is completely yieldedPlastic zone is confined to the notched ligament

$$W_f = W_e + W_P$$

 $W_P \propto$ plastic volume at initiation $W_e \propto$ fractured area

$$W_f = w_e lt + \beta w_p l^2 t$$

$$\frac{W_f}{lt} = w_f = w_e + \beta w_p l$$

eurecat | 2. Fracture toughness evaluation of thin sheets 19 <>

 $\Box w_e^i$ is a material property equivalent to J_c

Uf

testXpo - 2019 28TH International forum for Material Testing

eurecat | 2. Fracture toughness evaluation of thin sheets 20 <>

 \Rightarrow Comparison of toughness at crack initiation (w_e^i) and at fracture (w_e)

testXpo - 2019 28TH International forum for Material Testing

3. Fracture toughness as a material property

Outline

- 1. Background in crack-related problems
- 2. Fracture toughness evaluation in thin sheets
- 3. Fracture toughness as a material property
- 4. New device to measure fracture toughness
- 5. Conclusions and future works

> STRETCH FLANGEABIITY: HOLE EXPANSION TEST (ISO 16630)

eureca

Centre Tecnològic de Catalunya

 $\langle \rangle$

22

3. Fracture toughness as a material property ²³

D. Casellas et al., Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS, Met. and Mat. Trans. A, 48 (2017) 86-94.

testXpo - 2019 28TH International forum for Material Testing

Ulm 14-17 October2019

 $\langle \rangle$

3. Fracture toughness as a material property 24 <>

testXpo - 2019 28TH International forum for Material Testing

Ulm 14-17 October2019

3. Fracture toughness as a material property

- **Crashworthiness** is a complex property to measure
- Impact tests are time consuming and expensive
- Crashworthiness cannot be estimated from tensile tests properties

testXpo - 2019

28TH International forum for Material Testing

Ulm 14-17 October 2019

3. Fracture toughness as a material property 26 <>

⇒ Crash resistance AHSS: crashworthiness

28TH International forum for Material Testing

eurecat

⇒ Crash resistance AHSS: critical intrusion level

D.Frómeta, et al., On the correlation between fracture toughness and crash resistance of advanced high strength steels, Eng. Frac. Mech. 205 (2019) 319-332

3. Fracture toughness as a material property ²⁸

 \Rightarrow Crash resistance Al alloys

eurecat Centre Tecnològic de Catalunya

testXpo - 2019 28[™] International forum for Material Testing

 $\langle \rangle$

29 <>

> QUALITY CONTROL OF COIL PROPERTIES

- Fractures can unexpectedly occur in the workshop for some coils. Materials /coils within the metallurgical quality range, may give rise to cracking during part production
- Such fracture cannot be explained by using tensile tests properties or chemical composition
- Fractures can be understood by using EWF, coil properties can be assessed by EWF

Centre Tecnològic de Catalunya

3. Fracture toughness as a material property

AHSS (UTS 800 MPa): Same nominal chemical composition, different steelmaker:

- No OK UTS = 850 MPa, Elongation 17%
 Fracture toughness 174-243 KJ/m²
- OK, UTS =820 MPa, Elongation 16%
 Fracture toughness 277-318 KJ/m2

AHSS (UTS 1000 MPa): Same steelmaker, different heats

- Detection of coil quality
- Detection of coil differences (front vs tail)

 $\langle \rangle$

30

3. Fracture toughness as a material property

Aluminum serie 1xxx

eure

testX

28TH

- Fractures from different coils in stamping of embossed Al sheets
- Similar elongation and UTS
- Different fracture toughness in specimens extracted at 45 ^o from rolling direction

4. New device to measure fracture toughness

Outline

- 1. Background in crack-related problems
- 2. Fracture toughness evaluation in thin sheets
- 3. Fracture toughness as a material property
- 4. New device to measure fracture toughness
- 5. Conclusions and future works

4. New device to measure fracture toughness

0

Notched specimens:
 notch by EDM (ρ≈150 µm)

eureca

- Pre-cracked specimens:
 - Notch + fatigue pre-cracking

testXpo - 2019 28[™] International forum for Material Testing

New method: Mechanically sheared notches

European Patent number EP18382321.0

4. New device to measure fracture toughness

eurecal

Centre Tecnològic de Catalunya

Benefits	New Device	Fatigue pre-cracking
Time consumption	< 1 h (like a tensile test)	1 week
Test requirements	Tensile testing machine + shearing tool	Tensile testing machine + Fatigue machine
Test cost	Cheap	Expensive
Reliable results	Yes	Yes
Fast	Yes	1 week
Crashworthiness and edge cracking	Yes	Yes
Workspace	Production facilities and external labs	Only laboratories

5. Conclusions and future works

Outline

- 1. Background in crack-related problems
- 2. Fracture toughness evaluation in thin sheets
- 3. Fracture toughness as a material property
- 4. New device to measure fracture toughness
- 5. Conclusions and future works

PLANET

- □ **Fracture toughness** is a suitable material property to predict and understand cracking problems in high strength metal sheets.
- □ The **new testing device** allows a fast and reliable measure of **fracture toughness** in thin sheet materials.
- Fracture toughness values can be used to predict edge cracking, crashworthiness in materials development and to check coil quality or select the raw material supplier in sheet metal forming
- □ The applicability to **other high strength materials** as polymers, CFRP, or castings, is under study: OptiLightMat, FormPlanet.

Stand TestXpo 2019

Further questions/interests?

Contact: Dr. Daniel Casellas, daniel.casellas@eurecat.org

